A Diagram-Like Basis for the Multiset Partition Algebra

(Part of my thesis work under the supervision of Rosa Orellana)

A Monoid Structure on Diagrams

An example of what we'll call a <u>partition diagram</u>: Ī 5 Ì ž Key features • Has r labeled vertices on top and bottom for some roo • The vertices are grouped into connected components by edges

A Monoid Structure on Diagrams

- A multiplication formula:
 - i) put the first diagram on top of the second, identifying the vertices in the middle
 - II) Restrict to the top and bottom, preserving which vertices are connected in the larger diagram.

V : an N-dimensional Q-vector space ; group of n×n invertible matrices over C Gln Vn : the rth tensor power of Vn. Think of elements as Sequences $V_1 \otimes V_2 \otimes \cdots \otimes V_r$ with each vieVn (actually linear combinations of these) GLn acts on Vn^{gr} in the following way $A_{I}(v_{I} \otimes v_{I} \otimes \cdots \otimes v_{r}) = (Av_{I}) \otimes (Av_{I}) \otimes \cdots \otimes (Av_{r})$

$$S_r$$
: The symmetric group on r symbols
 S_r also acts on $V_n^{\otimes r}$ by permuting tensor factors
 $\sigma.(v_1 \otimes v_2 \otimes \cdots \otimes v_r) = v_{\sigma^{-1}(I)} \otimes v_{\sigma^{-1}(r)} \otimes \cdots \otimes v_{\sigma^{-1}(r)}$

Natural question: How do these actions interact with each other?

They are Mutual Centralizers

• End
$$_{Sr}(V_n^{\otimes r})$$
 is generated by the G_{4n} -action
 $\sim Maps V_n^{\otimes r} \rightarrow V_n^{\otimes r}$ which commute with the S_r -action

•
$$End_{GLn}(V_n^{\otimes r})$$
 is generated by the S_r -action

This is an example of Schur-Weyl duality, first discovered by Schur and then popularized by Weyl who used it to Classify Un and GLn representations.

Main Takeaway: This duality connects the representation theory of the two objects.

$$V_n \stackrel{\otimes r}{\cong} \bigoplus_{\lambda} E^{\lambda} \boxtimes S^{\lambda}$$
 as a $GL_n \times S_r$ -module

We can restrict the GLn action to the n×n Permutation Matrices

To get a sense for working with these centraliters, lets walk through this class; cal case.

Given a basis
$$e_{1,...,e_n}$$
 of $V_{n,j}$ there is a basis of $V_n \otimes r$
indexed by sequences $\underline{i} = (i_{1,...,j}, i_r) \in [n]^r$:

$$e_i = e_i \otimes \cdots \otimes e_i$$

A permutation
$$\sigma \in S_n$$
 acts on $e_{\underline{i}}$ by:
 $\sigma \cdot e_{\underline{i}} = (\sigma e_{\underline{i}_1}) \otimes \cdots \otimes (\sigma e_{\underline{i}_r})$
 $= e_{\sigma(\underline{i}_1)} \otimes \cdots \otimes e_{\sigma(\underline{i}_r)}$
 $= e_{\sigma(\underline{i}_1)} \otimes \cdots \otimes e_{\sigma(\underline{i}_r)}$
where $\sigma(\underline{i}_1) = (\sigma(\underline{i}_1), \dots, \sigma(\underline{i}_r))$

Generally for $M \in End(V_n^{\otimes r})$, we can describe it by its Matrix Coefficients relative to this basis:

$$Me_i = \sum_i M_i^i e_i$$

The condition
$$M \in End_{S_n}(V_n^{\otimes r})$$
 amounts to:

$$M_{\underline{j}}^{\underline{i}} = M_{\sigma(\underline{i})}^{\sigma(\underline{i})}$$
 for all $\underline{i}, \underline{j}, \sigma(\underline{i})$

Each orbit represents a basis element, so how do we compactly represent each orbit?

If we label these graphs with 1, ..., r on top and $\overline{1}, ..., \overline{r}$ on bottom, we get set partitions from connected components.

These graphs representing orbits are not unique:

A diagram is an equivalence class of graphs on the vertices [r]u[r] with the same connected components They are in correspondence with set portitions in Tar

We'll Now Call End_{sn}
$$(V_n^{\otimes r})$$
 the Partition algebra
 $P_r(n)$ (introduced by Jones and by P. Martin in the 90s)

The basis obtained this way is called the orbit basis, which we'll write as

$$\left\{ \mathcal{T}_{\pi} : \pi \in \Pi_{ar} \right\}$$

There is another basis ξL_{π} called the diagram basis given by:

$$\mathcal{L}_{\pi} = \sum_{\substack{V \leq \pi \\ V \text{ is a coarsening of } \pi}} \mathcal{T}_{V}$$

Orbit basis example:

$$T = (n-4) T = (n-4) T = (n-3) T T = (n-3) T T = (n-3) T = (n-3$$

The formula:

- i) Put the first diagram on top of the second
 ii) Restrict to the top and bottom, preserving which vertices are connected in the larger diagram.
- iii) Record a coefficient of n° where c is the humber of Components stranded in the middle.

$$G \subset V_{n}^{\otimes r} \supset A$$

$$\frac{G}{GL_{n}} \xrightarrow{A} \xrightarrow{Typ:GI Element}}{SL_{n}}$$

$$\frac{G}{GL_{n}} \xrightarrow{CS_{r}} \xrightarrow{Typ:GI Element}}{SL_{n}}$$

$$\frac{G}{GL_{n}} \xrightarrow{Typ:GI Element}}{SL_{n}}$$

$$\frac{G}{SL_{n}} \xrightarrow{Typ:GI Element}}{SL_{n}} \xrightarrow{Typ:GI Element}}{SL_{n}}$$

$$\frac{G}{SL_{n}} \xrightarrow{Typ:GI Element}}{SL_{n}} \xrightarrow{Typ:GI E$$

Howe Duality

$$V_{n,k}$$
: The space of nxk Matrices over C
 $P'(V_{n,k})$: The space of homogeneous polynomial forms on $V_{n,k}$
These are homogeneous polynomials of degree r in
indeterminates
 X_{ij} for $1 \le i \le n$, $1 \le j \le K$
where x_{ij} picks out the entry ij in the matrix:
 $X_{ij} X_{i3} X_{22} \left(\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \right) = 2 \cdot 3 \cdot 5$

Howe Duality

In the 1980s, Roger Howe determined that GLn G P(Vn, K) S GL form a mutually centralizing pair where • A \in GLn acts by $(A \cdot f)(x) = f(A^{-1}x)$ • BEGL, acts by (B.f)(x) = f(xB)

Howe Duality

Orellana and Zabrocki (2020) examined $Ends_n(P'(Y_{n,k}))$, describing an orbit basis for it and naming it $MP_{r,k}(n)$, the Multiset Partition algebra.

This basis is indexed by diagrams whose vertices are Colored from a set of K colors with identically colored Vertices among the top or bottom indistinguishable.

These diagrams also represent Partitions but now repitition is allowed (indicated by double brackets).

We will consistently use these colors:
$$1 = 1$$

 $2 = 1$

Writing
$$\{X_{\widehat{\Pi}}: \widehat{\Pi} \in \widehat{\Pi}_{S,W}\}$$
 for the orbit basis obtained
by Orellana and Zabrocki, an example of its multiplication is:

$$X \longrightarrow X \longrightarrow (n-3) \times (n-3$$

This looks like the orbit basis for PrChl. Can we change to a basis like the diagram basis?

Let $S_r \subseteq A_r(n) \subseteq P_r(n)$ and define a new algebra $\widetilde{A}_{r,n}(n)$ Called the corresponding Painted algebra with basis: $\left\{ D_{\widetilde{T}} : \stackrel{\widetilde{T}T}{\longrightarrow} obtained by coloring the vertices} \right\}$

The product is given by: - Colors Must Match in Middle or else product is 7ero Average over permutations of the top of the second diagram Take the product as in Pr(n)

Theorem Let
$$S_n \in G \in GL_n$$
 be a subgroup with
 $End_G(V_n^{\otimes r}) = A_r(n)$.
Then

$$End_{G}\left(P'(V_{n,k})\right) = \tilde{A}_{r,k}(n).$$

Corollary
$$MP_{r,\kappa}(n) \cong \widetilde{P}_{r,\kappa}(n)$$
. We call the basis
 $\{\mathcal{D}_{\overrightarrow{T}}\}$ of $MP_{r,\kappa}(n)$ the diagram-like basis

Subalgebras

A partition
$$\lambda$$
 of n is a weakly decreasing sequence $(\lambda_1, \dots, \lambda_k)$ of positive integers which sum to n .
The Young diagram of λ is an array of left-justified boxes with λ_i boxes in the $i^{\pm n}$ row from the bottom.

A Multiset Partition tableau of shape λ is a filling of λ 's Young diagram like so:

Write $MSPT(\lambda, r, \kappa)$ for the set of these tableaux with a total of r numbers from [r, r].

Order multisets by the last-letter order:

$$11 < 2$$
 $12 < 22$
 $22 < 12$

A semistandard multiset partition tableau has rows weakly increasing and columns strictly increasing.

Write $SSMPT(\lambda, r, \kappa)$ for the set of these.

An example of the action:

X Two blocks above the first row get combined

$$MP_{r,\kappa}^{\lambda} := Span of SSMPT(\lambda,r,\kappa)$$
Theorem The MP_{r,\kappa}^{\lambda} for $\lambda + n$ and $\sum_{i=2}^{l(\lambda)} \lceil \frac{i+1}{\kappa} \rceil \lambda_i^{i}$ form
a Complete set of irreducible representations for
 $MP_{r,\kappa}(n)$ when $n \ge 2r$.

Break $P'(V_{n,n})$ into pieces $U_{\underline{n}}$ based on the second index.

$$E.g. \qquad X_{11} \times_{21} \times_{22} \times_{22} \quad E \mathcal{U}_{(2,2)}$$

Write $W_{r,n}$ for weak compositions of r of length k Then $P^{r}(V_{n,n}) \cong \bigoplus_{\substack{a \in W_{r,n}}} U_{a}$ as a G_{ln} -module

$$S_{a}: Young subgroup \qquad S_{a} = \frac{1}{|S_{a}|} \sum_{\sigma \in S_{a}}^{\tau} \sigma$$

$$E.g. \qquad S_{(d,d)} = S_{\xi \mid, d\xi} \times S_{\xi \mid, d\xi}$$

$$S_{(d,d)} = \frac{1}{4} \left(|J_{3}4| + |J_{1}34| + |J_{4}3| + |J_{4}3| + |J_{4}3| \right)$$

Recall
$$S_r$$
 acts on $V_n^{\otimes r}$ by permuting factors
 $S_{G,A}(e, Be_A Be_A Be_A) = \frac{1}{2} (e_1 Be_A Be_A Be_A + e_A Be_A Be_A Be_A)$

However, we get an induced isomorphism $End_{G}(\bigoplus_{a \in W_{r,u}} \mathcal{U}_{a}) \stackrel{\sim}{=} End_{G}(\bigoplus_{a \in W_{r,u}} \mathcal{S}_{a} \mathcal{V}_{u} \stackrel{\otimes r}{=})$ $\gamma \rightarrow \overline{\phi} \cdot \gamma \cdot \overline{\phi}$

Note for MEGL,

 $\overline{\Phi}\psi\overline{\Phi}M = \overline{\Phi}\psi M'\overline{\Phi}' = \overline{\Phi}M''\psi\overline{\Phi}' = M\overline{\Phi}\psi\overline{\Phi}'$

 $End_{G}\left(\mathcal{P}(V_{n,u})\right) \cong End_{G}\left(\bigoplus_{a} s_{a} V_{n}^{\otimes r}\right)$ $\stackrel{\sim}{=}$ $\stackrel{\sim}{\to}$ $Hom_G(s, V_n^{\otimes r}, s_q^{\otimes r})$ $\stackrel{\sim}{=} \underbrace{\mathcal{F}}_{\underline{a}b} \stackrel{\sim}{\overset{\sim}{=}} Ehd_G(V_n^{\mathcal{B}r}) \stackrel{\sim}{\overset{\circ}{=}}$

