A Diagram-Like Basis for the Multiset Partition Algebra
(Part of my thesis work under the supervision of Rosa Orellana)
Alexander Wilson - Dartmouth College February $15^{\text {th }}, 2023$

A Monoid Structure on Diagrams

An example of what weill call a partition diagram:

Key features

- Has r labeled vertices on top and bottom for some $r>0$
- The vertices are grouped into connected components by edges.

A Monoid Structure on Diagrams

A multiplication formula:
i) Put the first diagram on top of the second, identifying the vertices in the middle
ii) Restrict to the top and bottom, preserving which vertices are connected in the larger diagram

Schur-Weyl Duality.
V_{n} : an n-dimensional \mathbb{C}-vector space
GIn: group of $n \times n$ invertible matrices over \mathbb{C}
$V_{n}^{\otimes r}$: the $r^{\text {th }}$ tensor power of V_{n}. Think of elements as sequences

$$
v_{1} \otimes v_{2} \otimes \cdots \otimes v_{r}
$$

with each $\boldsymbol{v}_{i} \in V_{\boldsymbol{n}}$ (actually linear combinations of these)
GIn acts on $V_{n} 8 r$ in the following way

$$
A .\left(v_{1} \otimes v_{2} \otimes \ldots \otimes v_{r}\right)=\left(A v_{1}\right) \otimes\left(A v_{2}\right) \otimes \ldots \otimes\left(A v_{r}\right)
$$

Schur-Weyl Duality.
S_{r}; The symmetric group on r symbols
Sr also acts on $V_{n}^{\otimes r}$ by permuting tensor factors

$$
\begin{gathered}
\sigma \cdot\left(v_{1} \otimes v_{2} \otimes \ldots \otimes v_{r}\right)=v_{\sigma^{\prime \prime}(1)} \otimes v_{\sigma^{-1}(2)} \otimes \ldots \otimes v_{\sigma^{-1}(r)} \\
G L_{n} \odot V_{n}^{\otimes r} \rightleftarrows S_{r}
\end{gathered}
$$

Natural question: How do these actions interact with each other?

Schur-Weyl Duality

$$
G L_{n} \subset V_{n}^{\otimes r}>S_{r}
$$

They are mutual centralizers

- End $s_{r}\left(V_{n}{ }^{\otimes r}\right)$ is generated by the GIn-action \because Maps $V_{n}{ }^{\otimes r} \rightarrow V_{n} \otimes r$ which commute with the S_{r}-action
- End $G_{L_{n}}\left(V_{n} \otimes r\right)$ is generated by the S_{r}-action

Schur-WeyI Duality.
This is an example of schur-weyl duality, first discovered by Schur and then popularized by weyl who used it to Classify U_{n} and $G L_{n}$ representations.

Main Takeaway:
This duality connects the representation theory of the two objects.
More precisely:

$$
V_{n}^{\otimes r} \cong \oplus_{\lambda} E^{\lambda} \otimes S^{\lambda} \text { as a } G L_{n} \times S_{r}-\text { module }
$$

The Partition Algebra
We can restrict the GL action to the $n \times n$ permutation matrices

To get a sense for working with these centralizers, lets walk through this classical case.

The Partition Algebra
Given a basis e_{1}, \ldots, e_{n} of V_{n}, there is a basis of $V_{n} \otimes r$ indexed by sequences $i=\left(i_{1}, \ldots, i_{r}\right) \in[n]^{r}$:

$$
e_{\underline{i}}=e_{i,} \otimes \cdots \otimes e_{i r}
$$

A permutation $\sigma \in S_{n}$ acts on e_{i} by:

$$
\begin{aligned}
\sigma \cdot e_{\underline{i}} & =\left(\sigma e_{i_{1}}\right) \otimes \cdots \otimes\left(\sigma e_{i r}\right) \\
& =e_{\sigma\left(i_{1}\right)} \otimes \cdots \otimes e_{\sigma(i r)} \\
& =e_{\sigma(\underline{i})}
\end{aligned}
$$

where $\sigma(i)=(\sigma(i), \ldots, \sigma(i, n)$

The Partition Algebra
Generally for $M \in \operatorname{End}\left(V_{n}^{\otimes r}\right)$, we can describe it by its matrix coefficients relative to this basis:

$$
M e_{\underline{i}}=\sum_{\underline{j}} M \underline{\underline{i}} e_{\underline{i}}
$$

The condition $M \in E{ }^{n} d_{S_{n}}\left(V_{n}{ }^{\otimes r}\right)$ amounts to: $M_{\underline{j}}^{\underline{i}}=M_{\sigma(\underline{i})}^{\sigma(\underline{i})}$ for all $\underline{i}, \underline{j}, \sigma$

The Partition Algebra
Visualizing some of these conditions for Ends $S_{3}\left(v_{3} \otimes^{2}\right)$:

Each orbit represents a basis element, so how do we compactly represent each orbit?

The Partition Algebra

The Partition Algebra
If we label these graphs with $1, \ldots, r$ on top and $\overline{1}, \ldots, \bar{r}$ on bottom, we get set partitions from connected components.

$$
\longrightarrow\{\{1,2, \overline{1}, \overline{2}\}\}
$$

$$
\begin{aligned}
& 10 d \\
& \text { T. } \quad-\overline{2} \\
& \longrightarrow\{\{1,2\},\{1\},\{2\}\}
\end{aligned}
$$

Write $\pi_{2 r}$ for the set of set partitions of $[r] \cup[\bar{r}]$.

The Partition Algebra
These graphs representing orbits are not unique:

A diagram is an equivalence class of graphs on the vertices $[r] \cup[\bar{r}]$ with the same connected components They are in correspondence with ser partitions in $\pi_{2 r}$

The Partition Algebra
For example, Ends $\left(v_{4} \otimes^{\otimes 2}\right)$ has a basis indexed by:

(need $n \geq 2 r$ for all the diagrams to appear)

The Partition Algebra
We'll now call Ends $s_{n}\left(V_{n}{ }^{\otimes r}\right)$ the partition algebra $P_{r}(n)$ (introduced by Jones and by P. Martin in the 90s)

The basis obtained this way is called the orbit basis, which weill write as

$$
\left\{T_{\pi}: \pi \in \Pi_{2 r}\right\}
$$

The Partition Algebra
There is another basis $\left\{L_{\pi}\right\}$ called the diagram basis given by:

$$
L_{\pi}=\sum_{v \leq \pi} T_{v}
$$

Ext $L_{: L}=T_{\square \Lambda}+T_{\nabla A}+T_{\square!}+T_{\square .}+T_{\square \square}$

The Partition Algebra
Orbit basis example:

$$
\begin{aligned}
T: \Lambda: D & =(n-4) T \ldots!+(n-3) T \nabla! \\
& +(n-3) T . \square!+(n-2) T \square!
\end{aligned}
$$

Diagram basis example:

$$
L: \triangle L: D=n L::
$$

The Partition Algebra
The formula:
i) put the first diagram on top of the second
ii) Restrict to the top and bottom, preserving which vertices are connected in the larger diagram.
iii) Record a coefficient of n^{c} where c is the number of components stranded in the middle.

The Partition Algebra

$$
G \subset V_{n}^{\otimes r} \rightleftarrows A
$$

$\frac{G}{C L_{n}} \quad \frac{A}{C S_{r}} \quad \frac{\text { Typical Element }}{!\times!!}$
$D_{n} \quad$ Braver Alyebora $(\operatorname{Br}(n)) \quad \therefore$ (matchnns)

$S_{n} \quad$ Partition Algera $\quad!-i!$

$U_{q}\left(\mathrm{SO}_{2}\right)$ Temperkey -Lieb Hiybror $\therefore \therefore$ (non-croosing matchings)

Howe Duality.
$V_{n, n}$: The space of $n \times k$ matrices over \mathbb{C}
$P^{r}\left(V_{n, n}\right)$: The space of homogeneous polynomial forms on $V_{n, n}$
These are homogeneous polynomials of degree r in indeterminates

$$
x_{i j} \quad \text { for } \quad 1 \leq i \leq n, \quad 1 \leq j \leq k
$$

where $x_{i j} p_{i}$ chs out the entry $i j$ in the matrix:

$$
x_{12} x_{13} x_{22}\left(\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\right)=2 \cdot 3 \cdot 5
$$

Howe Duality.
In the 1980s, Roger Howe determined that

$$
G L_{n} G P^{r}\left(V_{n, k}\right) \circlearrowleft G L_{k}
$$

form a mutually centralizing pair where

- $A \in C L_{n}$ acts by $(A \cdot f)(x)=f\left(A^{-1} x\right)$
- $B \in G L_{k}$ acts by $(B \cdot f)(x)=f(X B)$

Howe Duality.

The Multiset Partition Algebra
Orellara and Zabrocki (2020) examined Ends $\left(P^{r}\left(V_{n, k}\right)\right)$, describing an orbit basis for it and naming if $M P_{r, n}(n)$, the multiset partition algebra.

This basis is indexed by diagrams whose vertices are Colored from a set of K colors with identically colored vertices among the top or bottom indistinguishable.

The Multiset Partition Algebra
These diagrams also represent partitions but now repitition is allowed (indicated by double brackets).

$$
\rightarrow\left\{\left\{\left\{\left\{1, \overline{1}, \frac{2}{2}\right\}\right\},\{\{1\}\},\left\{\left\{2,2, \frac{2}{2},-\frac{2}{2}\right\}\right\}\right\}\right.
$$

$\overbrace{1 / 2 / 2}^{0}$
We'll write $\tilde{\Pi}_{2 r, k}$ for the set of multiset partitions with r entries each from $[k]$ and $[k]$.

We will consistently use these colors: $1=$

$$
\alpha=
$$

The Multiset Partition Algebra
Writing $\left\{X_{\tilde{\pi}}: \tilde{\pi} \in \tilde{\Pi}_{2 r, k}\right\}$ for the orbit basis obtained by Orellana and Zabrocki, an example of its multiplication is:

This looks like the orbit basis for Pr (un). Can we change to a basis like the diagram basis?

The Multiset Partition Algebra
Let $S_{r} \subseteq A_{r}(n) \subseteq P_{r}(n)$ and define a new algebra $\tilde{A}_{r, n}(n)$ Called the corresponding painted algebra with basis:

$$
\left\{D_{\tilde{\pi}:} \begin{array}{l}
\tilde{\pi} \text { obtained by coloring the vertices }\} \\
\text { of a diagram in } A_{1}(n)
\end{array}\right\}
$$

The Multiset Partition Algebra
The product is given by:
i-: i Colors must match in

$$
i \searrow
$$

 is Zero

Average over permutations of the top of the second diagram

Take the product as in $\operatorname{Pr}(n)$

The Multiset Partition Algebra
Theorem Let $S_{n} \subseteq G \subseteq G L_{n}$ be a subgroup with

$$
\text { End }{ }_{G}\left(V_{n}^{\otimes r}\right)=A_{r}(n)
$$

Then

$$
\text { End }_{G}\left(P^{r}\left(V_{n, k}\right)\right)=\tilde{A}_{r, k}(n) \text {. }
$$

Corollary $M P_{r, k}(n) \cong \tilde{P}_{r, k}(n)$. We call the basis $\left\{D_{\tilde{\pi}}\right\}$ of $M P_{r, k}(n)$ the diagram-like basis

Representations
A partition λ of n is a weakly decreasing sequence $\left(\lambda_{1}, \ldots, \lambda_{l}\right)$ of positive integers which sum to n.

The Young diagram of λ is an array of left-justified boxes with λ_{i} boxes in the $i^{i t h}$ row from the bottom.

$$
(3,3,2,1) \longleftrightarrow
$$

Representations
A multiset partition tableau of shape λ is a filling of λ 's Young diagram like so:

Only the first row 11 Entries ane multisets has empty boxes, at least as many as λ_{2}

Write $\operatorname{MSPT}(\lambda, r, k)$ for the set of these tableaux with a total of r numbers from $[k]$.

Representations
Order multisets by the last-letter order:

$$
11<2 \quad 12<22 \quad 22<122
$$

A semstandard multiset partition tablean has rows weakly increasing and columns strictly increasing

Write $\operatorname{SSMPT}(\lambda, r, k)$ for the set of these.

Representations
An example of the action:

X Two blocks above the first row get combined

Representations

$$
M P_{r, n}^{\lambda}:=\text { Span of } \operatorname{SSMPT}(\lambda, r, k)
$$

Theorem The $M P_{r, k}^{\lambda}$ for $\lambda+n$ and $\sum_{i=2}^{\rho(\lambda)}\left\lceil\frac{i-1\rceil}{k}\right\rceil \lambda_{i}$ form a complete set of irreducible representations for $M P_{r, k}(n)$ when $n \geq 2 r$.

Proof Sketch
Break $P^{r}\left(V_{n, x}\right)$ into pieces u_{a} based on the second index.

$$
\text { E.g. } \quad x_{11} x_{21} x_{22} x_{22} \in U_{(2,2)}
$$

Write $w_{r, k}$ for weak compositions of r of length k

Then $P^{r}\left(V_{n, k}\right) \cong \bigoplus_{\underline{a} \in W_{r, k}} U_{\underline{a}}$ as a $\quad L_{n}$-module

Proof Sketch
$S_{\underline{a}}$: Young subgroup

$$
s_{\underline{a}}=\frac{1}{\left|s_{1}\right|} \sum_{\sigma \in S_{\underline{a}}} \sigma
$$

E.g. $\quad S_{(\alpha, \gamma)}=S_{\{1, \alpha\}} \times S_{\{3,1\}}$

$$
s_{(2,2)}=\frac{1}{4}(1234+2134+1243+2143)
$$

Recall S_{r} acts on $V_{r}{ }^{\otimes r}$ by permuting factors

$$
s_{(\alpha) \lambda}\left(e_{1} \nabla e_{-} \nabla e_{2} \nabla e_{\alpha}\right)=\frac{1}{2}\left(e_{1} \otimes e_{2} \nabla e_{2} \nabla e_{\mu}+e_{2} \nabla e_{1} \otimes e_{1} \nabla e_{2}\right)
$$

Proof Sketch
As vector spaces,

$$
\begin{aligned}
\Phi: U_{\underline{a}} & \sim s_{\underline{a}} V_{n}^{\otimes r} \\
x_{11} x_{21} x_{22} x_{22} & \longmapsto s_{(2, \gamma)}\left(e_{1} \otimes e_{2} \nabla e_{2} \otimes e_{2}\right)
\end{aligned}
$$

They both have a GL_ -action but are not clearly isomorphic as $G l_{n}$-modules. For $m \in C l_{n}$,

$$
\Phi M=M^{-1} \Phi
$$

Proof Sketch
However, we get an induced isomorphism

$$
\begin{aligned}
\operatorname{End} d_{G}\left(\bigoplus_{\underline{Q} \in w_{, n}} u_{a}\right) & \cong \operatorname{End}_{G}\left(\bigoplus_{\underline{a} \in W_{r, u}} s_{a} V_{n}{ }^{\otimes r}\right) \\
\psi & \longrightarrow \Phi \circ \psi \circ \Phi^{-1}
\end{aligned}
$$

Note for $M \in G L n$,

$$
\Phi \psi \Phi^{-1} M=\Phi \psi M^{-1} \Phi^{-1}=\Phi M^{-1} \psi \Phi^{-1}=M \Phi \psi \Phi^{-1}
$$

Proof Sketch

$$
\begin{aligned}
& E n d_{G}\left(P^{r}\left(V_{n, u}\right)\right) \cong \operatorname{End} d_{G}\left(\oplus_{\underline{a}} s_{\underline{a}} V_{n}{ }^{\otimes r}\right) \\
& \cong \bigoplus_{\underline{a} \underline{b}} \operatorname{Hom}_{G}\left(S_{\underline{\underline{D}}} V_{n}^{\otimes r}, S_{a} V_{n}^{\oplus r}\right) \\
& \cong \bigoplus_{\underline{\underline{b}}}^{\bigoplus} \underline{s}_{\underline{s}} \text { End }_{G}\left(V_{n}^{\otimes r}\right)_{\underline{b}}
\end{aligned}
$$

with product

$$
\left(s_{\underline{\underline{a}}} \pi s_{\underline{b}}\right) \cdot\left(s_{\underline{s}} \gamma s_{\underline{\underline{1}}}\right)=\delta_{\underline{\underline{b}}, \underline{g}}\left(s_{\underline{a}} \pi s_{\underline{\underline{g}}} \gamma s_{\underline{d}}\right)
$$

The Multiset Partition Algebra Colors Match in middle

$$
\begin{aligned}
\left(s_{\underline{a}} \pi s_{\underline{b}}\right) \cdot\left(s_{\underline{c}} \gamma s_{\underline{1}}\right) & =\delta_{\underline{b}, \underline{\underline{b}}}\left(s_{\underline{a}} \pi s_{\underline{b}} \gamma s_{\underline{d}}\right) \\
& =\delta_{\underline{b}, \underline{\leq}} \frac{1}{\left|s_{\underline{b}}\right|} \sum_{\sigma \in s_{\underline{b}}} s_{\underline{a}} \pi \sigma \gamma s_{\underline{\underline{l}}}
\end{aligned}
$$

permutations of top of the second diagram

Proof Sketch
Proof summary

- Decompose $p^{r}\left(V_{n, \mu}\right)$
- Leads to a decomposition of End $\left(\operatorname{Pr}\left(V_{n}, u\right)\right)$ via idempotent
- The diagram-line basis comes from Sandwiching an idempotent between two partition diagrams

Thank youl.

