Plancherel Pie

π Day 2024
(Alex Wilson, 204 King)
For a fixed positive integer n, the Plancherel measure is a probability measure on the set of partitions ${ }^{1}$ of n (weakly decreasing sequences of positive integers summing to n). We represent these partitions as rows of left-justified boxes-for example, the partition $(5,3,1)$ looks like

A filling of these boxes with the numbers $1, \ldots, n$ such that the rows increase left-to-right and columns increase top-tobottom is called a standard Young tableau. For example,

1	3	4	6	7	
2	5	8			
9					

is a standard Young tableau of shape $(5,3,1)$. In the Plancherel measure, a particular partition λ appears with probability

$$
\mu(\lambda)=\frac{\left(f^{\lambda}\right)^{2}}{n!}
$$

where f^{λ} is the number of standard Young tableaux of shape λ. That is, the more possible fillings there are of a shape, the more likely it is to appear.

This pie is decorated with a random partition of 50 . Out of the 204,226 possibilities I sampled $(10,9,7,7,5,4,3,2,1,1,1)$:

But how do we choose a partition at random, making sure each λ shows up with probability $\mu(\lambda)$?

Sampling in the Plancherel measure

The letter π isn't just a number-it also often represents a permutation! To get a random partition of 50 with the appropriate weighted probability, you should first sample a permutation of 50 elements uniformly at random. Then the RSK algorithm allows you to turn this permutation into a standard Young tableau. If you then take the shape of that tableau, you've generated a random partition in the Plancherel measure. The permutation that resulted in the above partition of 50 is:
$13,33,9,17,24,1,49,2,42,19,27,5,21,4,44,8,34,29,41,38,26,7,45,23,36,3,35,20,43,46,40,16,32,18,28,48,22,6,11,50,39,12,14,47,31,37,10,25,15,30$

Because of this connection with permutations, the Plancherel measure is useful for studying the theory of random permutations, which can appear when studying the efficiency of sorting algorithms.

[^0]
[^0]: ${ }^{1}$ In general, the measure is on irreducible unitary representations of a compact group G, but it's harder to put those on a pie.

